

SSR1 Tuner concept

Tuner requirements
Tuner layout
Critical features
Helium Vessel concept

Tuner requirements

```
Cavity stiffness = 25 kN/mm
```

Cavity elongation sensitivity = 540 kHz/mm

Cavity force tuning = 46 N/kHz

Range of the fast/fine tuning $\geq 1 \text{ kHz} (2 \mu m)$

Range slow/coarse tuning $\geq 270 \text{ kHz} (500 \mu m)$

Piezos cold (20K) stroke = $10 \, \mu m$ (efficiency $\geq 20\%$)

Motor stroke = $5 \text{ } mm \text{ (efficiency} \ge 10\%)$

Stepper motor resolution $\leq 200 \, Hz \, (1/5 \, piezo \, stroke)$

Motor should not rotate under maximum load without holding current

Bilateral operation (pulling during pressure tests)

One-handed operations through access port:

Removal of entire cartridge (motor + 2 piezos)

Fine adjustment of the piezos (for pre-loading or release tuner tension)

Main components

Load scheme

Critical features

Piezos plate centering during operation – rotation and flex – reduce vs. favor

Shearing forces on piezos – mitigated by piezo housing – what is the limit?

Design of piezo housing – improve to protect piezo edges

Backlash – reduce moving joints to a minimum and favor journal bearings?

Fine adjustments – differential screw details

Alignment of all elements despite variations of helium vessels (~1-2 mm expected)

Removal of tuner cartridge

300mm of diameter so one arm can work inside

VIEW BY THE ACCESS PORT ON THE CRYOMODULE

Fine adjustment of the piezos

Fine adjustment of the piezos with differential screw.
One-hand operation on (A) should allow fine adjustment

Helium Vessel concept

SS316L

Nb

Bellows

 $k_{CAV} = 25 \, kN/mm$

 $\frac{df}{dl} = 540 \ kHz/mm$

 $\frac{df}{dp} \approx 0 \pm 10 \; Hz/torr$

Transition ring

Cu-brazed joint developed at ANL

Next steps

Elastic FEM analyses to verify compliance with requirements (aforementioned + material allowables)

Study of dynamics and tribology

Feasibility and risk analysis

Selection of commercial components and hardware

